Is a Gas of Strongly Interacting Atomic Fermions a Nearly Perfect Fluid?
نویسنده
چکیده
We use all-optical methods to produce a highly-degenerate Fermi gas of spin-1/2 6Li atoms. A magnetic field tunes the gas near a collisional (Feshbach) resonance, producing strong interactions between spin-up and spin-down atoms. We have measured properties of a breathing mode over a wide range of temperatures. As the temperature is increased from below the superfluid transition to above, the frequency of the mode is always close to the hydrodynamic value, while the damping rate increases. A complete explanation of both the frequency and the damping rate in the normal collisional regime has not been achieved. Our measurements of the damping rate as a function of the energy of the gas are used to estimate an upper bound on the viscosity. Using our new measurements of the entropy of the gas, we estimate the ratio of the shear viscosity to the entropy density and compare the result with a recent string theory conjecture for the minimum viscosity of a perfect quantum fluid.
منابع مشابه
Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid?
Fermi gases with magnetically tunable interactions provide a clean and controllable laboratory system for modeling interparticle interactions between fermions in nature. The s-wave scattering length, which is dominant a low temperature, is made to diverge by tuning near a collisional (Feshbach) resonance. In this regime, two-component Fermi gases are stable and strongly interacting, enabling te...
متن کاملPerfect Fluidity in Atomic Physics
Experimental results obtained at the Relativistic Heavy Ion Collider (RHIC) have been interpreted in terms of a strongly interacting quark gluon plasma. The strongly interacting plasma is characterized by “perfect fluidity”, i.e. a ratio of shear viscosity to entropy density that saturates a proposed lower bound. In this contribution we explore the possibility that a similar phenomenon takes pl...
متن کاملPairing and phase separation in a polarized Fermi gas.
We report the observation of pairing in a gas of atomic fermions with unequal numbers of two components. Beyond a critical polarization, the gas separates into a phase that is consistent with a superfluid paired core surrounded by a shell of normal unpaired fermions. The critical polarization diminishes with decreasing attractive interaction. For near-zero polarization, we measured the paramete...
متن کاملExpansion dynamics in the one-dimensional Fermi-Hubbard model.
Expansion dynamics of interacting fermions in a lattice is simulated within the one-dimensional (1D) Hubbard model, using the essentially exact time-evolving block decimation (TEBD) method. In particular, the expansion of an initial band-insulator state is considered. We analyze the simulation results based on the dynamics of a two-site two-particle system, the so-called Hubbard dimer. Our find...
متن کاملRadio-frequency spectroscopy of ultracold fermions.
Radio-frequency techniques were used to study ultracold fermions. We observed the absence of mean-field "clock" shifts, the dominant source of systematic error in current atomic clocks based on bosonic atoms. This absence is a direct consequence of fermionic antisymmetry. Resonance shifts proportional to interaction strengths were observed in a three-level system. However, in the strongly inter...
متن کامل